国内外半导体激光器发展历程及现状

半导体激光,现状,历程,

一、国内大功率半导体激光器研发历程概况

国外早在20世纪90年代初就开始大功率半导体激光器研究,已经取得很大进展。国内起步相对较晚,但是发展很快,主要研究单位包括中科院半导体所、上海光机所、长春光机所、清华大学、中电集团十三所、中科院光电技术研究所和西安电子科技大学等。

中科院半导体所等单位采用的是光纤捆绑耦合技术进行光束整形。先用一根光纤柱透镜进行快轴压缩,然后进入与发光区相对应的严格周期分布的光纤排,最后把输出的多根光纤捆成一束。这种方法可以简便地实现LD线阵输出光场的对称化,且光束经过一段距离的光纤传输后在输出截面上的强度得到均匀化,传输过程中的光能损失也很小,缺点是输出光纤芯径粗,亮度不高。

2001年,吉林大学和长春光学精密机械学院用这种方法对10单元线阵半导体激光器条进行了光纤耦合实验,耦合效率为75%。2003年,中科院半导体所利用这种技术实现了60 W 的大功率输出,耦合效率为82%,输出光纤为1.5 mm,数值孔径为0.11,现已实现小批量生产。

中科院光电技术研究所采用微柱透镜快轴准直并引起光束微偏转、消色差的双胶合透镜偏转光束、闪耀光栅阵列反偏并校正光束的方法进行光束整形,整形效果较好,得到了快慢轴方向比较均衡的光束质量,并能耦合进芯径200 mm、数值孔径0.22的光纤,但是整个系统由折射和衍射器件共同构成,结构复杂,耦合效率不高。

清华大学采用等腰直角棱镜组方法,整形系统由两套错位紧密排列的等腰直角棱镜组组合而成。对808 nm输出功率40 w 的半导体激光器列阵进行了光束整形,整形系统的功率效率为90%。整形前的慢轴、快轴光束质量参数比值为2499,整形后为0.77。

武汉凌云科技光电有限责任公司采用折射整形法,在被整形线阵半导体激光器传播方向上依次放置两组互相垂直的、分别由M 片光学玻璃板片紧密排列构成的折射棱镜堆,进行光束的重排,实现快慢轴方向光束质量均匀化。目前该公司可以提供30 W、400 m的耦合输出系统。

中科院上海光学精密机械研究所采用折反射整形法,利用一组绕自身底棱旋转45°的微片棱镜堆,使得线阵半导体激光器发出的光在慢轴方向被N个微棱镜切割成N段,每一段光束在对应的微棱镜中经过几次内全反射后偏转90°,实现了慢轴光束在快轴方向的重排。利用此技术,实现了600 mm 光纤输出,系统的总效率达到52%。

中电集团十三所采用偏振复合技术,首先两个线阵半导体激光器分别进行快轴准直和光束整形变换,将其中一路光束利用半波片改变其偏振态,使其与另一路光束偏振度正交,这样再经过偏振合束器,两路光就整合到一路,且光束质量不变,达到提高光亮度的目的。利用此技术,实现了两个808 nm线阵半导体激光器耦合进芯径400 μm,数值孔径0.22的石英光纤,整个系统耦合效率为60% ,功率密度48000 W/cm2 。

中国科学院半导体研究所早在2002年就报道了通过光纤排捆绑耦合进行光束整形的技术。半导体激光器线列阵的输出光束首先用多模光纤进行快轴压缩,然后一对一的耦合进精密排列的光纤列阵中,最后在输出端捆成一束,实现了l5 w 的激光输出,耦合效率为75%。该方法结构简单、耦合效率高、成本低、调节简单、利于产品化生产。2003年研制成功了一对线列阵半导体激光器60 w 功率光纤耦合输出器件,总耦合效率82%,出光口径为1.5 mm,数值孔径0.1l。2004年5月又实现了单条线列阵半导体激光器30 W 功率光纤耦合输出,出光口径为1.07 mm,数值孔径0.1l。光电子器件国家工程中心的光纤排捆绑耦合整形器件已实现小批量生产。

随着半导体材料外延生长技术、半导体激光波导结构优化技术、腔面钝化技术、高稳定性封装技术、高效散热技术水平的不断提高,半导体激光器功率及光束质量飞速发展,促进了直接工业用半导体激光加工系统和高功率光纤激光器的发展。目前国际上直接工业用大功率半导体激光器在输出功率5000 W级别已超过灯抽运固体激光器的光束质量,在1000 W级别已超过全固态激光器的光束质量。随着化合物半导体技术的进步,工业用大功率半导体激光器的输出功率和光束质量将进一步提高,将进一步扩展其工业应用范围。在高功率光纤激光器抽运源方面,光纤耦合输出的功率不断上升,光纤芯径和数值孔径不断降低,导致光纤激光器的抽运亮度不断提高,同时成本却不断下降,因此未来高功率光纤激光器的输出功率与光束质量也将不断地提高。可以预计,在未来工业激光加工中,特别是在金属激光加工领域,大功率半导体激光器主要应用在激光表面处理、激光熔覆和近距离激光焊接领域,而大功率光纤激光器主要应用在光束质量要求更高的激光切割和远程激光焊接领域。

在国内,最近几年高功率、高光束质量大功率半导体激光器相关领域方面也取得了长足的进步,如北京凯普林光电公司在单个单元器件的光纤耦合方面,西安炬光科技公司在半导体激光芯片的封装方面均接近或达到了国际先进水平,北京工业大学在半导体激光器系统方面达到了国际先进水平。但是在半导体激光器的核心部件—半导体激光芯片的研制和生产方面,一直受外延生长技术、腔面钝化技术以及器件制作工艺水平的限制,国产半导体激光器件的功率、寿命方面较之国外先进水平尚有较大差距。这导致国内实用化高功率、长寿命半导体激光芯片主要依赖于进口,直接导致我国半导体激光器系统的价格居高不下,严重影响了大功率半导体激光器在我国的推广应用,同时也限制了我国高功率光纤激光器的研制和开发。可喜的是,随着当前我国化合物半导体器件,如LED、多节GaAs太阳能电池、红外热成像器等技术的不断应用和发展,化合物半导体器件的外延技术和封装技术将不断成熟,这些技术应用于同是化合物半导体器件的半导体激光器,大大促进半导体激光器件的国产化,从而推动半导体激光器这一高效、节能型激光器更广泛地运用于我国的工业、国防、科研等领域中。

二、国外半导体激光器领域一些进展

1、新型半导体激光器光束质量媲美光纤、CO2及固体激光器

美国TeraDiode公司开发出了一款超高亮度的千瓦量级直接半导体激光器。该激光器在COTS半导体激光器基础上采用新的合束与整形技术,使得输出光束的光束参量积达到了3.75mm-mrad,这一数值是迄今为止见诸报道的千瓦量级直接半导体激光器中最低的。采用单根芯径为50μm,数值孔径为0.15的光纤耦合输出时,在单一中心波长下该激光器的输出功率达到了2030W。这种尾纤输出的两千瓦直接半导体激光器具有与工业用光纤和CO2激光器相比拟的亮度,比现今最好的直接半导体激光器的输出光束亮度高十倍以上,适用于工业中的材料处理,包括金属薄片的切割和焊接。

考虑到TeraDiode公司现有的直接半导体激光技术,更高功率和亮度的直接半导体激光器将被制造出来。我们期望制造出功率达到4~6千瓦,BPP范围在4mm-mrad内的直接半导体激光器。这种激光器在高速金属切割领域有更广阔的应用。 使用WBC技术,当功率和温度变化时可以保持中心波长高度稳定。这种特性对固体激光器和光纤激光器的泵浦很重要。此外,对功率为1kW的尾纤耦合输出的泵浦激光器,其线宽可以控制在2~4nm。

最后,TeraDiode公司利用高亮度光束的合束与整形方法,可实现任何波长的二极管和半导体激光器的结合。半导体激光器中心波长选择能力与TeraDiode公司提供的超高亮度方法结合,所产生的新特性有更多新的应用。比如在遥感领域,使用波长超过1μm的人眼安全半导体激光器,而在高效材料加工领域,往往使用波长小于1μm的激光器,这是因为许多材料对较短波长的光吸收更强烈。这种波长选择特性不适用于其他类型的高亮度工业激光器。

2、日本开发出可直接加工的高功率蓝色半导体激光器

据岛津制作所在发布资料中介绍,2010年全球加工用激光器市场的规模为2500亿日元,预计2020年将扩大至5700亿日元。除了原来的碳酸气激光器之外,半导体激光激励的固体激光器及光纤激光器也在逐渐成为加工用激光器主流。把这些激光器的激励源——半导体激光器用于直接激光加工用途的“直接二极管激光器(DDL)”不仅体积小、电光转换效率高,而且还可通过大量生产来降低成本,因此作为新一代激光加工光源备受关注。

如果作为高功率半导体激光器的DDL能够对金属等吸收率高的可视光区域实现短波长化,并达到可获得高聚光密度的高亮度,那么,就不仅能适应加工材料的多样化发展趋势,还可用于微细加工领域,满足随着智能手机等电子产品的小型化而增长的此类加工需求。因此,岛津制作所预计DDL取代碳酸气激光器和固体激光器的速度将加快,到2020年,DDL的市场规模将扩大至500亿日元。

此次开发的蓝色DDL采用在kW级输出功率下也可高效灵活传输的光纤耦合型,耗电量只有绿光固体激光器的一半左右。因此可扩展配备DDL的激光加工设备及处理设备的可能性。 在这一背景下,岛津制作所以蓝光光盘播放机和投影仪等使用的GaN类半导体激光器为基础,运用以前积累的光学设备精密组装技术、高耐性涂装技术以及新开发的光复用技术,把金属吸收率高的短波长(450nm)光纤耦合型蓝色半导体激光器的亮度成功提高到了原来的16倍。此次,该公司在全球首次开发出了光斑尺寸微小、可用于微细加工用途的蓝色DDL。

3、夏普推出效率最高的红色半导体激光器

夏普公司在近年来一直十分投入开发微型投影机的激光二极管。近日,该公司发布了世界光转换效率最高的红色半导体激光器,型号为“GH0641FA2C”,其光转换效率达到33%。该产品振荡波长为640nm,通过优化材料组合和构造,提高了转换效率,在单模振荡红色半导体激光器中实现了业界最高的转换效率。该激光器计划主要用于车载用平视显示器及微型投影机等。

据悉,此款产品的最大光输出功率为150mW,阈值电流为55mA(标准)。光输出功率为150mW时,工作电流为182mA(标准),工作电压为2.5V(标准)。峰值振荡波长为642nm。光束发散角度为水平方向9度、垂直方向17度。样品价格(含税)为5000日元,从2013年1月31日开始样品供货,2013年3月29日开始量产,计划每月量产1万台。

4、NTT研发出新型超紧凑半导体激光器

日本电报电话(NTT)公司近日研发出一种超紧凑型半导体激光器(LEAP激光器),这一技术可提供10-Gbit/s的数据传输服务,且能耗量为世界最低。其1比特(1-bit)数据传输的能耗为5.5 fJ,比传统半导体激光器的十分之一还低。

ICT设备中的微处理器(例如服务器和路由器)的能耗量通常都很大,而使用此激光器的光互连技术将可以降低微处理器约40%的能耗,从而可以取代当前微处理器之间的数据传输电气互连技术。

FTTH和智能手机等宽带服务的爆发式扩张,将使网络流量在2025年时增加200倍以上。随着云计算和超级计算机技术的发展,数据处理速度和计算机吞吐量的增加将大大增加ICT相关设备的能耗。据预计,至2025年ICT相关设备的总能耗将增加五倍。

NTT实验室一直致力于通过降低微处理器(MPU)的能耗来寻求解决ICT设备高能耗和发热问题的根本解决方案,这是因为MPU的耗能量占据了这一设备能耗的最大比例。NTT实验室已针对MPU芯片外、芯片上的光互连开发出相应的光纤数据传输技术。

该实验室开发出的LEAP激光器可实现电流注入光子晶体激光器的第一次连续波操作,其室温(20°C-30°C)下的阈值电流为390微安培。要在MPU之间部署这一激光器用于光纤互连,首要问题是如何减少阈值电流以实现超低能耗。另一项难题则如何在ICT设备的环境温度(80°C)下实现这一操作。

5、日本JAXA研制出新型InGaAs半导体激光器

近日,日本宇宙航空研究开发机构(JAXA)成功制造出了30mm见方的InGaAs单结晶。这是通过利用宇宙实验获得的成果,开发出使温度与浓度梯度一致的新结晶成长法,并通过减小溶液的厚度抑制对流实现结晶化。该产品是根据以独立行政法人新能源及产业技术综合开发机构(NEDO)为中心制定的共同研究协议,由JAXA与NTT及Furuuchi Chemical共同开发出来的。

另外,JAXA等还采用此次开发的结晶技术制造出了半导体激光器,并利用光纤进行了通信实验。采用波长为1.3μm的激光成功进行了20km的远程通信。通过光纤传导准确无误地传输了每秒1010次的闪烁信号。

InGaAs半导体激光器与原来的InP半导体激光器相比,即使温度升高,输出功率也不会明显降低。因此,无需冷却,因而可减少耗电量。JAXA期待今后InGaAs半导体激光器可作为能够大幅削减耗电量的半导体激光器,应用于基于光通信的都市网络基站。

加载更多>>
责任编辑:范琪
专题 更多>>
评论 更多>>
独家编译 更多>>