我国科研团队实现二氧化碳向丙烷高效转化

2026-01-15 12:35:08 来源: 科技日报 点击数:

科技日报记者 洪敬谱 通讯员 刘冠琪

记者15日从安徽师范大学获悉,该校化学与材料科学学院毛俊杰教授团队在光催化二氧化碳还原领域取得重要进展——该团队通过原子尺度精准设计多位点协同催化剂,成功实现二氧化碳向高附加值产物丙烷的高效转化。相关研究成果日前发表于国际期刊《德国应用化学》。

二氧化碳作为主要温室气体,其资源化利用是应对气候变化、实现能源可持续发展的主要路径之一。光催化技术凭借太阳能驱动,可直接将二氧化碳与水转化为高价值化学品,为碳循环经济提供了理想解决方案。然而,二氧化碳分子具有极强的化学惰性,还原反应步骤复杂,尤其是形成含三个及以上碳原子的长碳链产物时,需经历多次碳—碳偶联反应,在能量与动力学层面面临巨大挑战。传统催化剂往往局限于生成甲烷、一氧化碳等短碳链产物,难以实现长碳链化合物的高效选择性合成,这成为制约该技术进一步应用的一大瓶颈。

针对这一难题,研究团队创新设计了一种基于金属有机框架材料的原子级催化剂。该催化剂以NH₂-MIL-125(Ti)纳米片为载体,通过精准调控制备工艺,构建了镍单原子与相邻锰双原子组成的协同活性中心。实验结果显示,该催化剂在纯水环境中表现出优异的催化性能:丙烷产率达到32.2微摩尔每克每小时,电子选择性高达81.3%,且经过50次循环使用后仍保持稳定催化活性,展现出良好的应用潜力。

研究人员通过深入机理研究得出,丙烷的高选择性生成源于镍与锰活性位点之间的协同机制:镍单原子位点主要负责活化二氧化碳并转化为一氧化碳中间体;相邻的锰双原子位点则高效促进碳‑碳键的形成与连接。尤为重要的是,镍与锰之间存在的强电子相互作用,显著削弱了反应中间体在结合过程中的固有排斥力,使得从双碳中间体向三碳产物转化的关键步骤得以顺利推进,从而实现了丙烷的高选择性生成。

该研究从原子尺度多位点协同催化的创新视角,揭示了光催化二氧化碳转化过程中碳链延伸的核心机制,为设计开发高效、高选择性二氧化碳还原催化剂提供了新策略。这一成果不仅推动了光催化碳转化领域的基础研究进展,更为温室气体资源化利用与绿色化工原料合成开辟了新路径,对实现“双碳”目标具有应用价值。

责任编辑:冷媚
网友评论
最热评论
没有更多评论了

抱歉,您使用的浏览器版本过低或开启了浏览器兼容模式,这会影响您正常浏览本网页

您可以进行以下操作:

1.将浏览器切换回极速模式

2.点击下面图标升级或更换您的浏览器

3.暂不升级,继续浏览

继续浏览